
The ADM Decomposition

V

1 The ADM Decomposition

Consider a d-dimensional spacetime with metric hab. We start by identifying a scalar field t whose isosurfaces
Σt are normal to the timelike unit vector given by

ua = −α∂at , (1)

where the lapse function α is

α :=
1√

−hab ∂at ∂bt
. (2)

An observer whose worldline is tangent to ua experiences an acceleration given by the vector

ab = uc · d∇cub , (3)

which is orthogonal to ua. The (spatial) metric on the d− 1 dimensional surface Σt is given by

σab = hab + uaub . (4)

The intrinsic Ricci tensor built from this metric is denoted by Rab, and its Ricci scalar is R. The covariant
derivative on Σt is defined in terms of the d dimensional covariant derivative as

DaVb := σa
cσb

e
(
d∇cVe

)
for any Vb = σb

cVc . (5)

The extrinsic curvature of Σt embedded in the ambient d dimensional spacetime (the constant r surfaces from
the previous section) is

θab := −σacσbd
(
d∇cud

)
= −d∇aub − uaab = −1

2
£uσab . (6)

This definition has a minus sign relative to the definition I normally use. This is for compatibility with the
standard conventions in the literature.

Now we consider a ‘time flow’ vector field ta, which satisfies the condition

ta ∂at = 1 . (7)

The vector ta can be decomposed into parts normal and along Σt as

ta = αua + βa , (8)

where α is the lapse function (2) and βa := σabt
b is the shift vector. An important result in the derivations that

follow relates the Lie derivative of a scalar or spatial tensor (one that is orthogonal to ua in all of its indices)
along the time flow vector field, to Lie derivatives along ua and βa. Let S be a scalar. Then

£tS = £αuS + £βS = α£uS + £βS . (9)

Rearranging this expression then gives

£uS =
1

α

(
£tS −£βS

)
. (10)
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Similarly, for a spatial tensor with all lower indices we have

£tWa... = α£uWa... + £βWa... . (11)

This is not the case when the tensor has any of its indices raised. In a moment, these identities will allow us to
express certain Lie derivatives along ua in terms of regular time derivatives and Lie derivatives along the shift
vector βa.

Next, we construct the coordinate system that we will use for the decomposition of the equations of motion.
The adapted coordinates (t, xi) are defined by

∂tx
a := ta . (12)

The xi are d dimensional coordinates along the surface Σt. If we define

Pi
a :=

∂xa

∂xi
, (13)

then it follows from the definition of the coordinates that Pi
a∂at = 0 and we can use Pi

a to project tensors onto
Σt. For example, in the adapted coordinates the spatial metric, extrinsic curvature, and acceleration and shift
vectors are

σij = Pi
aPj

bσab (14)

θij = Pi
aPj

bθab (15)

aj = Pj
bab (16)

βi = Pi
aβa = Pi

ata . (17)

The line element in the adapted coordinates takes a familiar form:

habdx
adxb = hab

(
∂xa

∂t
dt+

∂xa

∂xi
dxi
)(

∂xb

∂t
dt+

∂xb

∂xj
dxj
)

(18)

= hab
(
tadt+ Pi

adxi
)(
tbdt+ Pj

bdxj
)

(19)

= tatadt
2 + 2tadtPi

adxi + habPi
aPj

bdxidxj (20)

=
(
− α2 + βiβi

)
dt2 + 2βidtdx

i + σijdx
idxj (21)

⇒ habdx
adxb = − α2dt2 + σij

(
dxi + βidt

)(
dxj + βjdt

)
. (22)

Thus, in the adapted coordinate system we can express the components of the (d dimensional) metric hab and
its inverse hab as

hab =

(
−α2 + βiβi σijβ

j

σijβ
j σij

)
(23)

hab =

(
− 1
α2

1
α2 β

i

1
α2 β

i σij − 1
α2 β

iβj

)
(24)

det(hab) = −α2 det(σij) (25)

Obtaining the components of the inverse is a short algebraic calculation. Note that the spatial indices ‘i, j, . . .’
in the adapted coordinates are lowered and raised using the spatial metric σij and its inverse σij .
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In adapted coordinates there are several results concerning the projections of Lie derivatives of scalars and
tensors which will be important in what follows. The first, which is trivial, is that the Lie derivative of a scalar
S along the time-flow vector ta is just the regular time-derivative

£tS = ta∂aS =
∂xa

∂t

∂S

∂xa
= ∂tS . (26)

Next, we consider the projector Pi
a applied to the Lie derivative along ta of a general vector Wa, which gives

Pi
a£tWa = ∂tWa ∀ Wa . (27)

The important point is that this applies not just to spatial vectors but to any vector Wa, as a consequence of
the result

Pi
a£tua = 0 . (28)

Finally, we can show that the Lie derivative along ta of any contravariant spatial vector satisfies

P ia£tV
a = ∂tV

i ∀ V i = P iaV
a . (29)

This follows from a lengthier calculation than what is required for the first two results.

Given these results, we can express various geometric quantities and their projections normal to and along
Σt in terms of quantities intrinsic to Σt and simple time derivatives. First, the extrinsic curvature is

θij = − 1

2
Pi
aPj

b£uσab (30)

= − 1

2
Pi
aPj

b

(
1

α

(
£tσab −£βσab

))
(31)

⇒ θij = − 1

2α

(
∂tσab −

(
Daβb +Dbβa

))
. (32)

Since θab is a spatial tensor, projections of its Lie derivative along ua can be expressed in a similar manner

Pi
aPj

b£uθab =
1

α

(
∂tθab −£βθab

)
. (33)

Now we present the Gauss-Codazzi and related equations in adapted coordinates:

Pi
aPj

b
(
dRab

)
= Rij + θθij − 2θi

kθjk −
1

α

(
∂tθij −£βθij

)
− 1

α
DiDjα (34)

Pi
a
(
dRabu

b
)

= Diθ −Djθij (35)

dRabu
aub =

1

α

(
∂tθ − βi∂iθ

)
− θijθij +

1

α
DiD

iα (36)

dR = R+ θ2 + θijθij −
2

α

(
∂tθ − βi∂iθ

)
− 2

α
DiD

iα . (37)

2 Converting to ADM Variables

The metric is often presented in the form

habdx
adxb = httdt

2 + 2htidtdx
i + hijdx

idxj . (38)
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We would like to relate these components to the ADM variables: the lapse function α, the shift vector βi, and
the spatial metric σij . This is a fairly straightforward exercise in linear algebra. Comparing with (22), we first
note that

σij = hij . (39)

The inverse spatial metric, σij , is literally the inverse of hij , which is not the same thing as hij

σij = (σij)
−1 = (hij)

−1 6= hij . (40)

For the shift vector we have

hti = σijβ
j → σikhtk = σikσklβ

l = βi (41)

⇒ βi = σijhtj . (42)

Finally, for the lapse we obtain

α2 = σijhtihtj − htt . (43)
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