THE ADM DECOMPOSITION
*

1 The ADM Decomposition

Consider a d-dimensional spacetime with metric hy,. We start by identifying a scalar field ¢ whose isosurfaces
Y¢ are normal to the timelike unit vector given by

Ug = — Oyt , (1)

where the lapse function « is

1
o= Y. 2
\/—hab 9t Opt ( )

An observer whose worldline is tangent to u, experiences an acceleration given by the vector

ap = u’ - chub , (3)
which is orthogonal to u,. The (spatial) metric on the d — 1 dimensional surface ¥; is given by

Oab = hab + Ugup - (4)

The intrinsic Ricci tensor built from this metric is denoted by R, and its Ricci scalar is R. The covariant
derivative on X; is defined in terms of the d dimensional covariant derivative as

DV, :=0,°0° (dche) for any Vj, = oV, . (5)

The extrinsic curvature of ¥; embedded in the ambient d dimensional spacetime (the constant r surfaces from
the previous section) is

1
Oup = —Jacdbd(dvc’u(j) = —dvaub — Uqglp = _5 Lyoap - (6>

This definition has a minus sign relative to the definition I normally use. This is for compatibility with the
standard conventions in the literature.

Now we consider a ‘time flow’ vector field ¢*, which satisfies the condition
199t =1 . (7)
The vector t* can be decomposed into parts normal and along ¥; as
t* = au®+ p*, (8)

where « is the lapse function (2) and 8¢ := 0%t is the shift vector. An important result in the derivations that
follow relates the Lie derivative of a scalar or spatial tensor (one that is orthogonal to u® in all of its indices)
along the time flow vector field, to Lie derivatives along u® and 5. Let S be a scalar. Then

£45 = £auS + £55 = a£,S+ £35 . (9)

Rearranging this expression then gives

£,8 = é (£:5 — £55) . (10)



Similarly, for a spatial tensor with all lower indices we have
LW, =al W, + £,3Wa... . (11)

This is not the case when the tensor has any of its indices raised. In a moment, these identities will allow us to
express certain Lie derivatives along u® in terms of regular time derivatives and Lie derivatives along the shift
vector 5%.

Next, we construct the coordinate system that we will use for the decomposition of the equations of motion.
The adapted coordinates (¢, z°) are defined by

Opx® =1t . (12)
The ' are d dimensional coordinates along the surface ;. If we define

ox?

Pia =T,
ox*

(13)
then it follows from the definition of the coordinates that P;*d,t = 0 and we can use P;® to project tensors onto
Y¢. For example, in the adapted coordinates the spatial metric, extrinsic curvature, and acceleration and shift
vectors are

Oij = Pz‘anbUab (14)
0ij = PP 04 (15)
a; = P’y (16)

ﬁi = Piaﬁa = Bata . (17)

The line element in the adapted coordinates takes a familiar form:

a a ) b b .
hapdz®dz® = hab(ax it + 2% dgﬂ> <8x dt + 9% de> (18)

ot ozt ot OxJ
= hgp(tdt + P"da’) (t°dt + P;*da?)
= %, dt* 4 2t dt PAdx’ 4 hay PO Pibdatda?
= (—a® + B'B)dt* + 2B;dtda’ + o5z da’
= hgdadz’ = — o?dt* + 0 (dz’ + B'dt) (dz? + Bdt) .

Thus, in the adapted coordinate system we can express the components of the (d dimensional) metric hg, and

its inverse h% as
—a? + i Oii J
hab = < B ﬁ jIB (23>

oij ¥ ‘ Tij
1 1 i
ab __ T a? ‘ ?B
= 1 gi ij _ 1 gigi (24)
Lp o7 558

det(hab) = —a? det(aij) (25)

Obtaining the components of the inverse is a short algebraic calculation. Note that the spatial indices ‘¢, j, ...’
in the adapted coordinates are lowered and raised using the spatial metric o;; and its inverse o*.



In adapted coordinates there are several results concerning the projections of Lie derivatives of scalars and
tensors which will be important in what follows. The first, which is trivial, is that the Lie derivative of a scalar
S along the time-flow vector ¢t is just the regular time-derivative

022 05
ot 0x°

£4S =129,5 = =05 . (26)
Next, we consider the projector FP;* applied to the Lie derivative along t* of a general vector W,, which gives

PrLEW, =W, ¥ W, . (27)

The important point is that this applies not just to spatial vectors but to any vector W, as a consequence of
the result

P*£iu, =0 . (28)
Finally, we can show that the Lie derivative along t* of any contravariant spatial vector satisfies
P £Vi=9,V' ¥ Vi=P, V. (29)
This follows from a lengthier calculation than what is required for the first two results.

Given these results, we can express various geometric quantities and their projections normal to and along
>t in terms of quantities intrinsic to ¥; and simple time derivatives. First, the extrinsic curvature is

1
0= —5 PP £y0u (30)
1 1
= — 5 Pianb< (fta—ab - £50ab)> (31)
«
1
= (91] = — % <3t0'ab — (Daﬁb + Dbﬁa)> . (32)

Since 0, is a spatial tensor, projections of its Lie derivative along u® can be expressed in a similar manner
apb 1
PP;" £,0q, = o (8t9ab — £50ab) . (33)

Now we present the Gauss-Codazzi and related equations in adapted coordinates:

1 1
( ab) Rij + (902] — 29ik9jk — a (8t9ij — fﬁ@ij) — a DZ’D]‘Oz (34)
(dRabub) D»e — D7y (35)
Rapuu’ = (ata B'9,0) — ew)” +— L D.Dia (36)
‘R=R+6%+070; — - (ata — 5@@-9) - % D;D'a . (37)

2 Converting to ADM Variables
The metric is often presented in the form

hapdz®da® = hydt? 4 2hydtds’ + hijda'da? . (38)



We would like to relate these components to the ADM variables: the lapse function «, the shift vector 3;, and
the spatial metric o;5. This is a fairly straightforward exercise in linear algebra. Comparing with (22), we first
note that

Jij = hij . (39)

The inverse spatial metric, 0%, is literally the inverse of h;;, which is not the same thing as h*/

o = (i)' = (hij) "' # WY (40)
For the shift vector we have
hi =058 =  o%hy =% oup =5 (41)
= Bl = aijhtj . (42)
Finally, for the lapse we obtain
a? = 0" hyihy; — hay - (43)
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