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1. Curvature tensors

Consider a d + 1 dimensional manifold M with metric gµν . The covariant derivative on M that is metric-
compatible with gµν is ∇µ.

Christoffel Symbols

Γλµν =
1

2
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν) (1)

Riemann Tensor
Rλµσν = ∂σΓλµν − ∂νΓλµσ + ΓκµνΓλκσ − ΓκµσΓλκν (2)

Ricci Tensor
Rµν = δσλR

λ
µσν (3)

Schouten Tensor

Sµν =
1

d− 1

(
Rµν −

1

2 d
gµνR

)
(4)

∇νSµν = ∇µSνν (5)

Weyl Tensor

Cλµσν = Rλµσν + gλν Sµσ − gλσ Sµν + gµσ S
λ
ν − gµν Sλσ (6)
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Commutators of Covariant Derivatives

[∇µ,∇ν ]Aλ = RλσµνA
σ (7)

[∇µ,∇ν ]Aλ = RλσµνA
σ (8)

Bianchi Identity

∇κRλµσν −∇λRκµσν +∇µRκλσν = 0 (9)

∇νRλµσν = ∇µRλσ −∇λRµσ (10)

∇νRµν =
1

2
∇µR (11)

Bianchi Identity for Weyl

∇νCλµσν = (d− 2)
(
∇µSλσ −∇λSµσ

)
(12)

∇λ∇σCλµσν =
d− 2

d− 1

[
∇2Rµν −

1

2d
gµν∇2R− d− 1

2d
∇µ∇νR−

(
d+ 1

d− 1

)
R λ
µ Rνλ (13)

+ CλµσνR
λσ +

(d+ 1)

d(d− 1)
RRµν +

1

d− 1
gµν

(
RλσRλσ −

1

d
R2

)]

2. Conventions for Differential Forms

p-Form Components

A(p) =
1

p!
Aµ1...µp dx

µ1 ∧ . . . ∧ dxµp (14)

Exterior Derivative (
dA(p)

)
µ1...µp+1

= (p+ 1) ∂ [µ1Aµ2...µp+1 ] (15)

B [µ1...µn] :=
1

n!

(
Bµ1...µn + permutations

)
(16)

Hodge-Star (
?A(p)

)
µ1...µd+1−p

=
1

p!
εµ1...µd+1−p

ν1...νp Aν1...νp (17)

? ? =
(
− 1

)p(d+1−p)+1
(18)

Wedge Product (
A(p) ∧B(q)

)
µ1...µp+q

=
(p+ q)!

p! q!
A [µ1...µp Bµp+1...µp+q ] (19)
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3. Euler Densities

Let M be a manifold with dimension d+ 1 = 2n an even number. Normalized so that χ(S2n) = 2.

Euler Number

χ(M) =

∫
M
d 2nx

√
g E2n (20)

=

∫
M

e2n (21)

Euler Density

E2n =
1

(8π)n Γ(n+ 1)
εµ1 ...µ2n εν1 ...ν2n R

µ1µ2ν1ν2 . . . Rµ2n−1µ2nν2n−1ν2n (22)

e2n =
1

(4π)n Γ(n+ 1)
εa1 ...a2nRa1a2 ∧ . . . ∧Ra2n−1a2n (23)

Curvature Two-Form

Ra
b =

1

2
Rab c d ec ∧ ed (24)

Examples

E2 =
1

8π
εµνελρR

µνλρ (25)

=
1

4π
R

E4 =
1

128π2
εµνλρ εαβγδ R

µναβ Rλργδ (26)

=
1

32π2

(
RµνλρRµνλρ − 4RµνRµν +R2

)
=

1

32π2
CµνλρCµνλρ −

1

8π2

(
d− 2

d− 1

) (
RµνRµν −

d+ 1

4 d
R2

)

4. Hypersurfaces

Let Σ ⊂M be a d dimensional hypersurface whose embedding is described locally by an outward-pointing, unit
normal vector nµ. Rather than keeping track of the signs associated with nµ being either spacelike or timelike,
we will just assume that nµ is spacelike. Indices are lowered and raised using gµν and gµν , and symmetrization
of indices is implied when appropriate.

First Fundamental Form / Induced Metric on Σ

hµν = gµν − nµnν (27)

Projection onto Σ
⊥Tµ ... ν ... = hµλ . . . h

σ
ν . . . T

λ ...
σ ... (28)

Second Fundamental Form / Extrinsic Curvature of Σ

Kµν = ⊥(∇µnν) = h λ
µ h σ

ν ∇λnσ =
1

2
£nhµν (29)
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Trace of Extrinsic Curvature
K = ∇µnµ (30)

‘Acceleration’ Vector
aµ = nν∇νnµ (31)

Surface-Forming Normal Vectors

nµ =
1√

gνλ ∂να∂λα
∂µα ⇒ ⊥∇[µnν ] = 0 (32)

Covariant Derivative on Σ compatible with hµν

DµTα ... β ... = ⊥∇µTα ... β ... ∀ T = ⊥T (33)

Intrinsic Curvature of (Σ, h)
[Dµ,Dν ]Aλ = RλσµνAσ ∀ Aλ = ⊥Aλ (34)

Gauss-Codazzi

⊥Rλµσν = Rλµσν −KλσKµν +KµσKνλ (35)

⊥
(
Rλµσν n

λ
)

= DνKµσ −DσKµν (36)

⊥
(
Rλµσν n

λnσ
)

= − LnKµν +K λ
µ Kλν +Dµaν − aµaν (37)

Projections of the Ricci tensor

⊥ (Rµν) = Rµν +Dµaν − aµaν − LnKµν −KKµν + 2K λ
µ Kν λ (38)

⊥ (Rµν n
µ) = DµKµν −DνK (39)

Rµνn
µnν = − LnK −Kµν Kµν +Dµaµ − aµaµ (40)

Decomposition of the Ricci scalar

R = R−K2 −Kµν Kµν − 2LnK + 2Dµaµ − 2 aµa
µ (41)

Lie Derivatives along nµ

£nKµν = nλ∇λKµν +Kλν∇µnλ +Kµλ∇νnλ (42)

⊥ (£nFµ ... ν ...) = £nFµ ... ν ... ∀ ⊥F = F (43)

5. Sign Conventions for the Action

These conventions follow Weinberg, keeping in mind that he defines the Riemann tensor with a minus sign
relative to our definition. They are appropriate when using signature (−,+, . . . ,+). The d + 1-dimensional
Newton’s constant is 2κ2 = 16πGd+1. The sign on the boundary term follows from our definition of the extrinsic
curvature.
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Gravitational Action

IG =
1

2κ2

∫
M
d d+1x

√
g
(
R− 2 Λ

)
+

1

κ2

∫
∂M
d dx
√
γ K (44)

=
1

2κ2

∫
M
d d+1x

√
g
(
R+K2 −Kµν Kµν − 2 Λ

)
(45)

Gauge Field Coupled to Particles

IM = − 1

4

∫
M
d d+1x

√
g FµνFµν (46)

−
∑
n

mn

∫
dp

(
−gµν(xn(p))

dxµn(p)

dp

dxνn(p)

dp

)1/2

(47)

+
∑
n

en

∫
dp
dxµn(p)

dp
Aµ(xn(p)) (48)

Gravity Minimally Coupled to a Gauge Field

I =

∫
M
d d+1x

√
g

[
1

2κ2
(R− 2 Λ)− 1

4
FµνFµν

]
+

1

κ2

∫
∂M
d dx
√
γ K (49)

6. Hamiltonian Formulation

The canonical variables are the metric hµν on Σ and its conjugate momenta πµν . The momenta are defined
with respect to evolution in the spacelike direction nµ, so this is not the usual notion of the Hamiltonian as the
generator of time translations.

Bulk Lagrangian Density

LM =
1

2κ2

(
K2 −Kµν Kµν +R− 2 Λ

)
(50)

Momentum Conjugate to hµν

πµν =
∂LM

∂ (£nhµν)
=

1

2κ2
(
hµν K −Kµν

)
(51)

Momentum Constraint

Hµ =
1

κ2
⊥ (nνGµν) = 2Dνπµν = 0 (52)

Hamiltonian Constraint

H = − 1

κ2
nµnνGµν = 2κ2

(
πµν πµν −

1

d− 1
π2
)

+
1

2κ2
(
R− 2 Λ

)
= 0 (53)

7. Conformal Transformations

The dimension of spacetime is d+ 1. Indices are raised and lowered using the metric gµν and its inverse gµν .

Metric

ĝµν = e 2σ gµν (54)
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Christoffel

Γ̂λµν = Γλµν + Θλ
µν (55)

Θλ
µν = δλµ∇νσ + δλν ∇µσ − gµν ∇λσ (56)

Riemann Tensor

R̂λµρν = Rλµρν + δλν ∇µ∇ρσ − δλρ∇µ∇νσ + gµρ∇ν∇λσ − gµν ∇ρ∇λσ (57)

+ δλρ∇µσ∇νσ − δλν ∇µσ∇ρσ + gµν ∇ρσ∇λσ − gµρ∇νσ∇λσ (58)

+
(
gµρ δ

λ
ν − gµν δλρ

)
∇ασ∇ασ (59)

Ricci Tensor

R̂µν = Rµν − gµν ∇2σ − (d− 1)∇µ∇νσ + (d− 1)∇µσ∇νσ (60)

− (d− 1) gµν∇λσ∇λσ (61)

Ricci Scalar

R̂ = e−2σ
(
R− 2 d∇2σ − d (d− 1)∇µσ∇µσ

)
(62)

Schouten Tensor

Ŝµν = Sµν −∇µ∇νσ +∇µσ∇νσ −
1

2
gµν∇λσ∇λσ (63)

Weyl Tensor

Ĉλµρν = Cλµρν (64)

Normal Vector

n̂µ = e−σ nµ n̂µ = eσ nµ (65)

Extrinsic Curvature

K̂µν = eσ
(
Kµν + hµν n

λ∇λσ
)

(66)

K̂ = e−σ
(
K + dnλ∇λσ

)
(67)

8. Small Variations of the Metric

Consider a small perturbation to the metric of the form gµν → gµν + δgµν . All indices are raised and lowered
using the unperturbed metric gµν and its inverse. All quantities are expressed in terms of the perturbation to
the metric with lower indices, and never in terms of the perturbation to the inverse metric. As in the previous
sections, ∇µ is the covariant derivative on M compatible with gµν and Dµ is the covariant derivative on a
hypersurface Σ compatible with hµν .

Inverse Metric
gµν → gµν − gµα gνβ δgαβ + gµα gνβ gλρ δgαλ δgβρ + . . . (68)
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Square Root of Determinant
√
g → √g

(
1 +

1

2
gµνδgµν + . . .

)
(69)

Variational Operator

δ(gµν) = δgµν δ 2(gµν) = δ(δgµν) = 0 (70)

δ(gµν) = −gµα gνβ δgαβ δ 2(gµν) = δ
(
−gµλ gνρ δgλρ

)
= 2 gµα gνβ gλρ δgαλ δgβρ (71)

F(g + δg) = F(g) + δF(g) +
1

2
δ 2F(g) + . . .+

1

n!
δ nF(g) + . . . (72)

Christoffel (All Orders)

δ Γλµν =
1

2
gλρ

(
∇µ δgρν +∇ν δgµρ −∇ρ δgµν

)
(73)

δ 2 Γλµν = −gλα gρβ δgαβ
(
∇µ δgρν +∇ν δgµρ −∇ρ δgµν

)
(74)

δ n Γλµν =
n

2
δ n−1

(
gλρ
) (
∇µ δgρν +∇ν δgµρ −∇ρ δgµν

)
(75)

Riemann Tensor

δ Rλµσν = ∇σδ Γλµν −∇νδ Γλµσ (76)

Ricci Tensor

δ Rµν = ∇λδ Γλµν −∇νδ Γλµλ (77)

=
1

2

(
∇λ∇µ δgλν +∇λ∇ν δgµλ − gλρ∇µ∇ν δgλρ −∇2 δgµν

)
(78)

Ricci Scalar

δ R = −Rµν δgµν +∇µ
(
∇ν δgµν − gλρ∇µ δgλρ

)
(79)

Surface Forming Normal Vector

δ nµ =
1

2
nµ n

νnλδgνλ =
1

2
δgµν n

ν + cµ (80)

cµ =
1

2
nµ n

νnλδgνλ −
1

2
δgµν n

ν = −1

2
h λ
µ δgλνn

ν (81)

Extrinsic Curvatures

δ Kµν =
1

2
nαnβδgαβKµν + δgλρ n

ρ
(
nµK

λ
ν + nνK

λ
µ

)
(82)

− 1

2
hµ

λ hν
ρnα

(
∇λδgαρ +∇ρδgλα −∇αδgλρ

)

δ K = −1

2
Kµν δgµν −

1

2
nµ
(
∇νδgµν − gνλ∇µδgνλ

)
+Dµcµ (83)
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9. The ADM Decomposition

The conventions and notation in this section (and the next) are different than what was used in the preceding
sections. We consider a d-dimensional spacetime with metric hab.

We start by identifying a scalar field t whose isosurfaces Σt are normal to the timelike unit vector given by

ua = −α∂at , (84)

where the lapse function α is

α :=
1√

−hab ∂at ∂bt
. (85)

An observer whose worldline is tangent to ua experiences an acceleration given by the vector

ab = uc · d∇cub , (86)

which is orthogonal to ua. The (spatial) metric on the d− 1 dimensional surface Σt is given by

σab = hab + uaub . (87)

The intrinsic Ricci tensor built from this metric is denoted by Rab, and its Ricci scalar is R. The covariant
derivative on Σt is defined in terms of the d dimensional covariant derivative as

DaVb := σa
cσb

e
(
d∇cVe

)
for any Vb = σb

cVc . (88)

The extrinsic curvature of Σt embedded in the ambient d dimensional spacetime (the constant r surfaces from
the previous section) is

θab := −σacσbd
(
d∇cud

)
= −d∇aub − uaab = −1

2
£uσab . (89)

This definition has an additional minus sign, compared to the extrinsic curvature Kµν for the constant r surfaces
of the previous section. This is merely for compatibility with the standard conventions in the literature.

Now we consider a ‘time flow’ vector field ta, which satisfies the condition

ta ∂at = 1 . (90)

The vector ta can be decomposed into parts normal and along Σt as

ta = αua + βa , (91)

where α is the lapse function (85) and βa := σabt
b is the shift vector. An important result in the derivations

that follow relates the Lie derivative of a scalar or spatial tensor (one that is orthogonal to ua in all of its
indices) along the time flow vector field, to Lie derivatives along ua and βa. Let S be a scalar. Then

£tS = £αuS + £βS = α£uS + £βS . (92)

Rearranging this expression then gives

£uS =
1

α

(
£tS −£βS

)
. (93)

Similarly, for a spatial tensor with all lower indices we have

£tWa... = α£uWa... + £βWa... . (94)
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This is not the case when the tensor has any of its indices raised. In a moment, these identities will allow us to
express certain Lie derivatives along ua in terms of regular time derivatives and Lie derivatives along the shift
vector βa.

Next, we construct the coordinate system that we will use for the decomposition of the equations of motion.
The adapted coordinates (t, xi) are defined by

∂tx
a := ta . (95)

The xi are d dimensional coordinates along the surface Σt. If we define

Pi
a :=

∂xa

∂xi
, (96)

then it follows from the definition of the coordinates that Pi
a∂at = 0 and we can use Pi

a to project tensors onto
Σt. For example, in the adapted coordinates the spatial metric, extrinsic curvature, and acceleration and shift
vectors are

σij = Pi
aPj

bσab (97)

θij = Pi
aPj

bθab (98)

aj = Pj
bab (99)

βi = Pi
aβa = Pi

ata . (100)

The line element in the adapted coordinates takes a familiar form:

habdx
adxb = hab

(
∂xa

∂t
dt+

∂xa

∂xi
dxi
)(

∂xb

∂t
dt+

∂xb

∂xj
dxj
)

(101)

= hab
(
tadt+ Pi

adxi
)(
tbdt+ Pj

bdxj
)

(102)

= tatadt
2 + 2tadtPi

adxi + habPi
aPj

bdxidxj (103)

=
(
− α2 + βiβi

)
dt2 + 2βidtdx

i + σijdx
idxj (104)

⇒ habdx
adxb = − α2dt2 + σij

(
dxi + βidt

)(
dxj + βjdt

)
. (105)

Thus, in the adapted coordinate system we can express the components of the (d dimensional) metric hab and
its inverse hab as

hab =

(
−α2 + βiβi σijβ

j

σijβ
j σij

)
(106)

hab =

(
− 1
α2

1
α2 β

i

1
α2 β

i σij − 1
α2 β

iβj

)
(107)

det(hab) = −α2 det(σij) (108)

Obtaining the components of the inverse is a short algebraic calculation. Note that the spatial indices ‘i, j, . . .’
in the adapted coordinates are lowered and raised using the spatial metric σij and its inverse σij .

In adapted coordinates there are several results concerning the projections of Lie derivatives of scalars and
tensors which will be important in what follows. The first, which is trivial, is that the Lie derivative of a scalar
S along the time-flow vector ta is just the regular time-derivative

£tS = ta∂aS =
∂xa

∂t

∂S

∂xa
= ∂tS . (109)

Next, we consider the projector Pi
a applied to the Lie derivative along ta of a general vector Wa, which gives

Pi
a£tWa = ∂tWa ∀ Wa . (110)
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The important point is that this applies not just to spatial vectors but to any vector Wa, as a consequence of
the result

Pi
a£tua = 0 . (111)

Finally, we can show that the Lie derivative along ta of any contravariant spatial vector satisfies

P ia£tV
a = ∂tV

i ∀ V i = P iaV
a . (112)

This follows from a lengthier calculation than what is required for the first two results.
Given these results, we can express various geometric quantities and their projections normal to and along

Σt in terms of quantities intrinsic to Σt and simple time derivatives. First, the extrinsic curvature is

θij = − 1

2
Pi
aPj

b£uσab (113)

= − 1

2
Pi
aPj

b

(
1

α

(
£tσab −£βσab

))
(114)

⇒ θij = − 1

2α

(
∂tσab −

(
Daβb +Dbβa

))
. (115)

Since θab is a spatial tensor, projections of its Lie derivative along ua can be expressed in a similar manner

Pi
aPj

b£uθab =
1

α

(
∂tθab −£βθab

)
. (116)

Now we present the Gauss-Codazzi and related equations in adapted coordinates:

Pi
aPj

b
(
dRab

)
= Rij + θθij − 2θi

kθjk −
1

α

(
∂tθij −£βθij

)
− 1

α
DiDjα (117)

Pi
a
(
dRabu

b
)

= Diθ −Djθij (118)

dRabu
aub =

1

α

(
∂tθ − βi∂iθ

)
− θijθij +

1

α
DiD

iα (119)

dR = R+ θ2 + θijθij −
2

α

(
∂tθ − βi∂iθ

)
− 2

α
DiD

iα . (120)

10. Converting to ADM Variables

The metric is often presented in the form

habdx
adxb = httdt

2 + 2htidtdx
i + hijdx

idxj . (121)

We would like to relate these components to the ADM variables: the lapse function α, the shift vector βi, and
the spatial metric σij . This is a fairly straightforward exercise in linear algebra. Comparing with (105), we first
note that

σij = hij . (122)

The inverse spatial metric, σij , is literally the inverse of hij , which is not the same thing as hij

σij = (σij)
−1 = (hij)

−1 6= hij . (123)

For the shift vector we have

hti = σijβ
j → σikhtk = σikσklβ

l = βi (124)

⇒ βi = σijhtj . (125)

Finally, for the lapse we obtain

α2 = σijhtihtj − htt . (126)
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